Stretchable Silver Nanowire-Elastomer Composite Microelectrodes with Tailored Electrical Properties.
Journal article

Stretchable Silver Nanowire-Elastomer Composite Microelectrodes with Tailored Electrical Properties.

  • Martinez V Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, ETZ F76, CH-8092 Zurich, Switzerland.
  • Stauffer F Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, ETZ F76, CH-8092 Zurich, Switzerland.
  • Adagunodo MO Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, ETZ F76, CH-8092 Zurich, Switzerland.
  • Forro C Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, ETZ F76, CH-8092 Zurich, Switzerland.
  • Vörös J Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, ETZ F76, CH-8092 Zurich, Switzerland.
  • Larmagnac A Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, ETZ F76, CH-8092 Zurich, Switzerland.
Show more…
  • 2015-06-13
Published in:
  • ACS applied materials & interfaces. - 2015
English We introduce a photolithography process compatible with soft and rigid substrates, enabling the fabrication of complex 3D interconnected patterns of silver nanowire (AgNW) networks embedded in polydimethylsiloxane (PDMS). Dimensions of the AgNW micropatterns are controlled within the film plane by photolithography, whereas thickness is controlled via a novel and uniform deposition technique using centrifugation. We report the first systematic characterization of the electromechanical properties of such microelectrodes with finest stretchable feature of 15 μm. We observe a geometry-dependent behavior of the gauge factor not only by changing the thickness of the microelectrodes, as it has been commonly reported so far, but also by varying their lateral dimensions. The presented nanocomposites exhibited sheet resistances down to 0.6 Ω/sq, gauge factors ranging from 0.01 to 100, and stretchability above 50% uniaxial strain. This versatile process allows for the production of highly sensitive strain sensors and robust high-density stretchable conductors on a wafer scale with direct implications in mass production of stretchable electronic devices.
Language
  • English
Open access status
closed
Identifiers
Persistent URL
https://sonar.rero.ch/global/documents/283706
Statistics

Document views: 30 File downloads: