Journal article
EEG slow waves and sleep spindles: windows on the sleeping brain.
-
Dijk DJ
Institute of Pharmacology, University of Zürich, Switzerland.
Published in:
- Behavioural brain research. - 1995
English
Slow waves and sleep spindles are prominent features of the EEG in non-REM sleep and some of the neurophysiological mechanisms underlying their genesis have been elucidated. In humans, slow-wave activity in non-REM sleep increases and EEG activity in the frequency range of sleep spindles decreases when wakefulness prior to sleep is varied from 2 to 40 h. The opposite changes are observed in the course of sleep, even when sleep is scheduled out of phase with the circadian rhythm of sleep propensity. Within non-REM sleep episodes the association between slow waves and sleep spindles is bi-phasic: both activities are correlated positively at the beginning and end of non-REM sleep episodes whereas in the middle part of non-REM sleep episodes high values of slow-wave activity coincide with low levels of spindle activity. An extension of wakefulness enhances the rise rate of slow-wave and spindle activity at the onset of sleep. Since macroscopic slow waves and sleep spindles both are dependent on hyperpolarization and synchronization of neurons in thalamo-cortical and cortical circuits, the sleep deprivation induced changes in these EEG activities may be related to reduced activating input to thalamo-cortical and cortical neurons, local facilitation of their hyperpolarization or facilitation of their synchronization. The precise regulation of slow-wave and spindle activity as a function of the duration and intensity of prior sleep and wakefulness demonstrates that these EEG oscillations are accurate indicators of non-REM-sleep homeostasis and suggests that they are fundamental to the sleeping brain.
-
Language
-
-
Open access status
-
closed
-
Identifiers
-
-
Persistent URL
-
https://sonar.rero.ch/global/documents/262706
Statistics
Document views: 18
File downloads: