Hydrogenation of imines catalyzed by trisphosphine-substituted molybdenum and tungsten nitrosyl hydrides and co-catalytic acid.
Journal article

Hydrogenation of imines catalyzed by trisphosphine-substituted molybdenum and tungsten nitrosyl hydrides and co-catalytic acid.

  • 2014-07-23
Published in:
  • Chemistry, an Asian journal. - 2014
English Hydride complexes Mo,W(CO)(NO)H(mer-etp(i)p) (iPr2PCH2CH2)2PPh=etp(i)p) (2 a,b(syn), syn and anti of NO and Ph(etp(i)p) orientions) were prepared and probed in imine hydrogenations together with co-catalytic [H(Et2O)2][B(C6F5)4] (140 °C, 60 bar H2). 2 a,b(syn) were obtained via reduction of syn/anti-Mo,W(NO)Cl3(mer-etp(i)p) and syn,anti-Mo,W(NO)(CO)Cl(mer-etp(i)p). [H(Et2O)2][B(C6F5)4] in THF converted the hydrides into THF complexes syn-[Mo,W(NO)(CO)(etp(i)p)(THF)][B(C6F5)4]. Combinations of the p-substituents of aryl imines p-R(1)C6H4CH=N-p-C6H4R(2) (R(1),R(2)=H,F,Cl,OMe,α-Np) were hydrogenated to amines (maximum initial TOFs of 1960 h(-1) (2 a(syn)) and 740 h(-1) (2 b(syn)) for N-(4-methoxybenzylidene)aniline). An 'ionic hydrogenation' mechanism based on linear Hammett plots (ρ=-10.5, p-substitution on the C-side and ρ=0.86, p-substitution on the N-side), iminium intermediates, linear P(H2) dependence, and DKIE=1.38 is proposed. Heterolytic splitting of H2 followed by 'proton before hydride' transfers are the steps in the ionic mechanism where H2 ligand addition is rate limiting.
Language
  • English
Open access status
closed
Identifiers
Persistent URL
https://sonar.rero.ch/global/documents/212039
Statistics

Document views: 27 File downloads: