Supporting Information

Multifunctional Nano-Biointerfaces: Cytocompatible Antimicrobial

Nanocarriers from Stabilizer-free Cubosomes

Mahsa Zabara¹, Berna Senturk¹, Mark Gontsarik¹, Qun Ren¹, Markus Rottmar¹, Katharina Maniura-Weber¹, Raffaele Mezzenga², Sreenath Bolisetty², Stefan Salentinig^{1,3}*

¹Laboratory for Biointerfaces, Department Materials meet Life, Empa Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland

²Laboratory for Food & Soft Materials Science, Institute of Food, Nutrition & Health, ETH Zurich, Schmelzbergstrasse 9, LFO, 8092, Zürich, Switzerland

³Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland

*Corresponding author: Stefan Salentinig, email: stefan.salentinig@unifr.ch

Figure S1. (a) Experimental SAXS patterns (symbols) and the fit calculated with the indirect Fourier transformation method (red curve) for the stabilizer-free GMO/LL-37 self-assemblies at a weight ratio of 50/50. (b) The corresponding pair distance distribution function, p(r). Note that the maximum dimension in p(r) at p(r) = 0 does not reflect the overall vesicle dimensions. As the maximum dimensions of the vesicles are above the resolution limit of our SAXS set-up the p(r) was mathematically forced to 0 at 100 nm.

Figure **S2.** Dynamic light scattering (DLS) measurements of stabilizer-free GMO cubosomes directly and 21 days after preparation. The DLS correlation functions of the particles represent rather monomodal particles with only a single relaxation time. The shift of the decay in the correlation function to longer relaxation times results from the increase in the particle size after 21 days; the slight change in the slope is from the relatively small changes in PDI after 21 days.

Figure S3. Cytotoxicity of HDF cells treated with the control groups. The Live/Dead assay shows live cells in green (calcein-AM staining) and dead cells in red (ethidium homodimer staining).

Figure S4. Uptake of FAM-labelled LL-37 from different formulations into HDF cells. The cells were treated with (a) LL-37, (b) GMO/LL-37, (c) LL-37/F127 and (d) GMO/LL-37/F127. The FAM-labelled LL-37 is shown in green, cell nuclei and actin filaments were stained with DAPI (blue) and phalloidin (red). Scale bar; $20 \mu m$.

Table S1. Minimum inhibition concentration (MIC) for the five different bacteria strains in this study.

Strains	GMO/LL-37	GMO/LL-37/F127
Gram positive		
Staphylococcus aureus DSMZ 20231	No antibacterial activity	No antibacterial activity
	(up to 250µg/ml LL-37)	(up to 250µg/ml of LL-37)
Staphylococcus epidermis ATCC 4961	No antibacterial activity	No antibacterial activity
	(up to 250µg/ml LL-37)	(up to 250µg/ml of LL-37)
Bacillus Subtilis	No antibacterial activity	No antibacterial activity
ATCC 6633 OD0.108	(up to 64µg/ml LL-37)	(up to 64µg/ml of LL-37)
Gram negative		
Escherichia coli DSMZ 30083	Antibacterial effect	Antibacterial effect
	MIC ≤ 40 μg/ml	MIC ≤ 80 µg/ml
Pseudomonas aeruginosa CIP A22 DSMZ 25123	Antibacterial effect	Antibacterial effect
	MIC ≤ 32 μg/ml	MIC ≤ 64 µg/ml