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Genetic mapping in natural populations is increasing
rapidly in feasibility and accessibility. As with many
areas in genetics, advances in molecular techniques
and statistics are drastically altering how we can inves-
tigate inheritance in wild organisms. For ecology and
evolution, this is particularly significant and promising,
because many of the organisms of interest are not
amenable to conventional genetic approaches. Admix-
ture mapping falls within a family of statistical
approaches that use natural recombination and linkage
disequilibrium between genetic markers and pheno-
types as the basis for mapping. Our aim in this review
is to provide a snapshot of previous and ongoing
research, existing methods and challenges, the nature
of questions that can be investigated and prospects for
the future of admixture mapping.

Genetics in species colliders
A greater understanding of the genetic basis of adap-
tations, and of reproductive isolation between species, is
a long-standing goal for biologists, in part because the
genetics can inform us about the history and processes
of adaptation and speciation [1,2]. A variety of methods are
utilized for associating phenotypes with particular geno-
types, including traditional approaches to genetic map-
ping, which involve statistical analyses of experimental
crosses or populations with known pedigrees. However,
many of the taxa of interest in ecology and evolution are not
amenable to experimental crosses or preclude estimation
of pedigrees. Consequently, there has been increasing in-
terest in using natural admixture and recombination be-
tween divergent taxa in the wild as the basis for genetic
mapping.

Hybridization or admixture creates recombinants be-
tween divergent parental taxa where they come into geo-
graphic contact, at habitat ecotones or in hybrid zones. For
any type of genetic mapping, recombination is required to
break up combinations of parental genotypes. The physical
processes of recombination and segregation mean that
typical parental allele combinations across loci are dis-
rupted and some independence between loci is introduced
(i.e. linkage disequilibrium is reduced). As a result, the
effects of individual genetic loci on a phenotype can be
detected and neighboring regions can be excluded (i.e.
phenotypic effects can be mapped to specific genomic
regions). In the case of admixture mapping, researchers

utilize naturally occurring, recombinant organisms to iso-
late the effects of individual loci on phenotypes of interest
(including components of reproductive isolation and clin-
ally varying, adaptive phenotypes). This is done by detect-
ing informative, introgressed genotypes at focal loci and
by quantifying excess admixture, the extent to which
genotypes are in a foreign genomic background (Box 1).

For mapping loci that affect isolation between taxa, the
over- and underrepresentation of certain genotypes in
different genomic backgrounds (quantified by excess
admixture) are of interest, without direct reference to
traits that might be subject to selection [3–5]. In this
application, loci and genotypes are identified that might
be subject to positive or negative selection at a barrier to
gene flow between divergent species or ecotypes (e.g. an
environmental cline or ecotone, or a barrier due to intrinsic
incompatibility). Similarly, excess admixture at individual
loci can be used as a predictor of phenotypic variation [6–8]

Glossary

Admixture: the mixing of genomes of divergent parental taxa; meant as a more

general term than ‘hybridization,’ so as to include taxa that we would not

typically refer to as hybridizing (i.e. mating between human populations and

between subspecific populations). The mixing of parental genomes can occur

at the level of individuals (individual admixture; the focus in this paper) and at

the level of populations through mixing of individuals from different source

populations (population admixture; possibly without matings among ancestry

lineages and the resulting individual admixture).

Association mapping: category of genetic analysis of phenotypic variation in

natural populations. Involves a search for significant associations between

phenotypes and nucleotide variation in candidate genes or whole-genome

scans. Also known as linkage disequilibrium mapping.

Genetic and physical maps maps: of molecular markers are a representation of

the linear order of markers on chromosomes. The distance between markers

on a genetic map is given by the rate of meiotic recombination between them

(recombination distance), whereas the distance between markers on a physical

map is the number of nucleotides separating them in the genome sequence.

Variation in the recombination rate along chromosomes will cause the relative

distance (genetic divided by physical distance) between markers to vary.

Genetic architecture: the number and genomic location of loci that contribute

to variation in a trait, as well as the allelic effect sizes and direction, the

genotypic effects (additivity and dominance) and the extent of epistatic

interactions among loci.

Introgression: movement of alleles of one taxon into the genetic background of

another. This requires successful reproduction of the F1 and either mating with

other F1 s or backcrosses to one of the parental taxa. Recombination in the F1

begins to break up parental allele combinations.

Linkage disequilibrium: statistical association between genotypes at different

loci, or between a phenotype and a focal locus, such that one can predict

probabilistically the genotype of the second locus (or phenotype) on the basis

of the genotype at the first.

Population structure: subdivision of a larger, potentially interbreeding

population into smaller units, the members of which are more similar to one

another than to members of other subpopulation units.
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and as a basis for mapping traits involved in adaptive
divergence between taxa. In both applications of excess
admixture, an existing genetic map of molecular markers
(either for the focal taxa or closely related species) will

allowmuch stronger inferences about genetic architectures
than would be possible if the linkage relationships of
markers were unknown. Admixture can be thought of as
an opportunity to observe the consequences of the ‘collision’
of the genomes of species, to note the regions that resist or
experience introgression and to utilize genetic recombi-
nants for mapping, in amanner roughly analogous to using
atom collisions to reveal their particular nature.

In contrast to commonly used and simple crossing
schemes for genetic mapping (e.g. BC1 and F2) that
involve only one generation of recombination, admixed
populations can harbor a range of recombinant individ-
uals that result from one or more generations of hybrid-
ization and recombination, depending on the area of
range overlap, the extent of reproductive isolation and
the length of time the populations have been in contact.
Consequently, many admixed populations will contain
early-generation hybrids that exhibit the necessary bal-
ance between recombination and linkage disequilibrium
for initial, coarse-scale mapping. Ideally, an admixed
population will also contain a large number of individuals
that have a history of several generations of hybridiz-
ation, with sufficient recombination for fine-scale map-
ping (Figure 1).

The potential value of admixed populations for mapping
has been noted before in the context of ecology and evol-
ution [9,10], and several studies have now utilized this
approach to mapping (see below). In the following para-
graphs, we place admixture mapping into the context of
differentmethods to study the genetic basis, functional role
and evolution of fitness-related traits. The uniqueness of
admixture mapping lies in its ability to embrace two
related but different methodologies commonly known as
‘association mapping’ and ‘population genomics.’

Association mapping uses recombination events accu-
mulated in natural populations over many generations to
detect statistical associations between genetic loci of
known genomic location and phenotypic traits of interest
[11]. Association mapping generally requires the absence
of population structure in the sample or statisticalmethods
to account for structure [12–15]. Similarly, admixture

Box 1. Concept of excess admixture

Excess admixture quantifies the extent towhich alleles and genotypes

are introgressed into a foreign genetic background or are found in

their native background. The contribution of each parental lineage to

the genome of admixed individuals is estimated by a hybrid index (h
[3,74]) or an admixture proportion [69,75,76]. In the case of parental

taxa that are fully differentiated and do not share alleles, the index is

simply a proportion of alleles across the genome that originate from

one of the parental taxa. Individual loci are expected to have

genotypes that are consistent with the ancestry of the remainder of

the genome. Departures of individual loci from genome-wide

ancestry are referred to as excess admixture or ancestry.

Excess admixture (x � h) is illustrated in Figure I, where a focal

locus (at the far left) is shown in combination with various genetic

backgrounds at 30 other loci. A score of 1 for excess admixture

corresponds to a pure genomic background of one parental species

(h = 0; light purple in Figure I), with the exception of the introgression

of a homozygous genotype at a focal locus (genotypic score, x = 1;

bottom row in Figure I). Similarly, a value of excess admixture of �1

corresponds to an individual with a genomic composition of the other

parental species (h = 1; dark purple in Figure I), with the exception of

an introgressed homozygous genotype at the focal locus (x = 0; top

row in Figure I). Individuals with parental genotypes at all loci, without

introgression and excess admixture (x � h = 0), are in the middle two

rows of Figure I. In Figure I, the intermediate shade of purple indicates

heterozygotes, but for simplicity no heterozygotes are depicted at the

focal locus (they would have x = 0.5).

Excess ancestry is a measure of introgression and of the residual

from the prediction of the focal locus genotype based on the

ancestry of the remainder of the genome, as quantified by a hybrid

index (h; Figure II). In Figure II, the genotype ‘aa’ is typical of the

parental taxon with h = 0, and genotype ‘AA’ is typical of the

parental taxon with h = 1. Individuals with genotypes that fall off of

the diagonal line (x = h) possess an introgressed, recombinant

genotype and exhibit excess admixture at the focal locus.

Measures of excess admixture form the basis for mapping

phenotypic variation and loci that contribute to isolation between

taxa [4,28], although different implementations of admixture map-

ping parameterize and utilize excess admixture in different ways.

Figure I. Introgressed genotypes in a foreign genetic background.

Figure II. Quantification of excess admixture.
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mapping incorporates population structure through its
measure of excess ancestry (Box 1). The ability to account
for population structure, in spite of the absence of con-
trolled crosses or pedigrees, is a common feature of associ-
ation and admixture mapping (Box 2). The absence of
confounding population structure allows true, develop-
mental genetic associations to be recognized, rather than
the large number of spurious associations between allelic
and phenotypic variation that are expected in the presence
of population structure, where the effects of individual loci
are not separated from their genetic background [12–
14,16,17].

Population genomics typically refers to the use of many
molecular markers with known genomic locations to
identify regions under selection, by distinguishing the
locus-specific effects of selection from the shared demo-
graphic history of the entire genome [18–20]. Population
genomics can help identify fitness-related genetic variation
even without a priori information on the actual phenotypes
under selection [21], but it cannot replace experiments to
identify and understand the traits targeted by selection
[20].

The promise of admixture mapping for ecologists and
evolutionary biologists lies in its combination of associ-
ation mapping and population genomics. Admixture map-
ping in natural populations can facilitate studies of genetic

architecture of phenotypes and the detection of regions or
loci under selection. This potentially allows evolutionary
biologists to study the genetic architecture of adaptation
and speciation in situ [1], including long-lived or otherwise
intractable taxa for which crosses or pedigrees would be
difficult to obtain [4,9,10]. Similarly, admixture mapping
can also aid studies of the phenotypic effects of recombina-
tion in microorganisms of medical or other direct relevance
to humans [22,23], and the interpretation of data from
metagenomics or community genomics research on
microbial populations in their natural environments
[22,24].

Applications in ecology and evolution
Although the potential of admixture mapping in evolution-
ary biology has been recognized for 15–20 years [25,26], the
first successful applications were focused on human traits

Figure 1. A schematic illustrating chromosomes of diploid recombinants that are

suitable for coarse- and fine-scale mapping. Parental taxa hybridize and form F1

progeny. Crosses between F1 individuals, or backcrosses to parental taxa, result in

recombinant chromosomes through meiosis in F1 individuals. F2 progeny are the

result of crossing F1 individuals, and each chromosome is expected to have one

recombination breakpoint on average (one crossover per meiosis); recombination

within chromosomes and segregation of chromosomes makes mapping possible,

even at this coarse level in the F2. Later-generation intercrosses (F4 and F8) are

also illustrated and these possess more recombination breakpoints, which

facilitate finer-scale mapping. Regions of each chromosome with different colors

represent genomic regions with ancestry in each of the parental taxa. The size of

these ancestry blocks and the linkage disequilibrium between neighboring

molecular markers decays with additional generations (t) of recombination (u) at

a rate proportional to (1 � u)t [64–66].

Box 2. Relationship between admixture and association

mapping

Until recently, the distinction between association and admixture

mapping was clearer. Traditionally, association mapping has been

applied to polymorphisms within candidate genes (e.g. [77–80]),

rather than on genome scans of variation, whereas admixture

mapping was typically applied to markers spanning a genome. With

the rapid increase of molecular markers for model organisms (e.g.

mouse, Arabidopsis, human), association mapping has become

feasible at the scale of the entire genome, with a high likelihood of

markers in linkage disequilibrium with genes underlying traits of

interest (e.g. [14,81,82]). Consequently, both approaches now can

involve mapping across the genome.

Despite the similarities between admixture and association

mapping, both in terms of purpose and methods, it is worth

recognizing the differences that remain between them, and the

tradeoffs associated with each. For one, admixture mapping will

often utilize the known axis of variation among hybrids of two

parental forms and focus on populations that are likely to contain

recombinant individuals that are the substrate for all approaches for

mapping. By contrast, association mapping often involves analysis

of more complex ancestries among a larger number of more closely

related source populations, and proceeds without a priori knowl-

edge of which are likely to contain informative, recombinant

individuals. Admixture mapping will often entail genetic recombi-

nation between comparatively simple parental genomic contribu-

tions, and substantial and consequential phenotypic variation that

exists between more divergent parental taxa [6–8], and therefore

might be more likely to be successful.

Second, high-resolution studies of the extent of linkage disequili-

brium in populations of Arabidopsis, mouse and human suggest

that a high density of molecular markers is required for association

mapping (intraspecific, population-level variation) at the scale of the

whole genome [72,73,83]. Admixture mapping with individuals that

are the result of a few generations of hybrid matings will require

fewer markers, because linkage disequilibrium will extend over

larger blocks of the genome, which should facilitate initial, coarse-

scale mapping. In some admixed populations there will also be

more advanced generation hybrids with linkage disequilibrium that

extends over smaller regions, which should allow fine-scale

mapping. Finally, many of the models and methods developed for

association mapping are relevant to admixture mapping. However,

it is not clear that the population histories that have been modeled

and investigated for association mapping encompass the consider-

able population structure and linkage disequilibrium that result from

crosses between substantially diverged species and populations

[12–16,66]. For example, more work remains to be done to compare

the performance of different methods of analysis when population

structure is great (e.g. when a sample might contain many F1s

between divergent parental populations).
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of medical interest. Examples include recent studies of
hypertension, susceptibility to multiple sclerosis, prostate
cancer risk and white blood cell count [27–31]. However,
multiple studies have identified genetic variants associ-
ated with lighter and darker skin pigmentation in humans
[32–34], a trait that might be differentially selected in
regions with low and high ultraviolet radiation (UVR),
owing to known associations between skin pigmentation
and vitamin D synthesis and protection from UVR [34,35].
These studies have identified several genes associated
with skin pigmentation that displayed genetic signatures
consistent with divergent positive selection [33,34] and
with recent convergent evolution of a lighter pigmentation
type in Europeans and East Asians [34]. Remarkably,
variation at two of these loci is also responsible for pigment
variation in the scales of fish [32,33].

There is an extensive history of using hybrid individuals
to investigate the genetics of isolation between taxa,
particularly analyses of population genetic variation along
spatial clines (e.g. [36–39]). However, to our knowledge, the
first application of admixture mapping to the ecology and
evolution of non-human organisms was in the plant genus
Helianthus (annual sunflowers [3]). Instead of spatial pos-
ition along a cline, this research used the overall genomic
composition of plants to predict the variation at individual
mapped loci and to detect excess admixture. The study
characterized the genetic architecture of the barrier to
gene flow between two ecologically divergent species of
sunflower, Helianthus annuus and H. petiolaris, using
three replicate hybrid zones in the central USA. For 26
chromosomal regions, introgression across replicate hybrid
zones was significantly reduced relative to neutral expec-
tations from the remainder of the genome, and 16 of these
were associated with pollen sterility, an important intrin-
sic isolation factor in plants. Also, �50% of the barrier to
gene flow was attributable to chromosomal rearrange-
ments segregating between the two species, thus indicat-
ing an important role for both genic and chromosomal
factors in species isolation. A follow-up study revealed
remarkably similar patterns of introgression for hybrid
zones located as far apart as Nebraska and California,
USA, thus confirming an important role for intrinsic
incompatibilities in determining barriers to gene flow in
these sunflowers (rather than extrinsic, environment-de-
pendent factors [40]).

A similar study of admixed populations was carried out
in members of the lake whitefish (Coregonus spp.) species
complex inNorth America [5]. This species complex offers a
tractable system for studying differentiation in traits
associated with adaptation to contrasting ecological
niches. Lake whitefish occur in multiple terrestrial lakes
formed after Pleistocene glaciations and are the subject of
studies of parallel selection during ecotype differentiation
and ecological speciation [41,42]. In admixed populations,
several loci were highly over- or underrepresented relative
to the genomic background. Some regions showed consist-
ent deviations in natural admixed populations and exper-
imental crosses [5]. Research in this system is a good
illustration of how studies of admixed natural populations
contribute to our understanding of the genetics of popu-
lation divergence and speciation, especially when com-

bined with data from experimental crosses and
replicated contrasts between divergent populations or
forms (in this case, multiple lakes).

Admixture mapping work also is under way in two
ecologically divergent European members of the genus
Populus (poplars, aspens, cottonwoods), P. alba and P.
tremula (floodplain versus upland species) [4,43,44].
Natural admixed populations of these species contain a
high proportion of recombinant, backcrossed genotypes
and occur in multiple locations throughout Europe
[4,43,45]. A first survey allowed the refinement of statisti-
cal approaches to detect locus-specific effects in genomic
studies of hybrid zones [4]. This research also revealed a
high potential to utilize genetic markers from P. tricho-
carpa, the first completely sequenced forest tree [46], for
mapping studies across different sections of the genus.
Admixture mapping in European species of Populus is
now being used to study intraspecific variation for genomic
isolation across the ranges of these species. This is feasible
because ‘replicate’ hybrid zones between these species are
found in several European river valleys, with largely inde-
pendent phylogeographic histories [4,43].

Research with mice has also utilized admixture as a
basis for studying the genetics of reproductive isolation
and trait variation, and excellent opportunities exist for
additional research [47]. Admixture between subspecies of
the house mouse (Mus musculus) has been the subject of
classical hybrid zone analyses [38,39] and offers great
potential for future analysis, particularly given the genome
resources for the species [48]. Similarly, existing labora-
tory mouse lines might provide a suitable recombination
history for admixture mapping of isolating factors and
other trait variation [49,50], as the genomes of laboratory
mouse lines are largely derived from admixture between
domesticus and musculus subspecies of M. musculus [51].
However, whether sufficient recombination for fine-scale
mapping has occurred remains unclear [52–54].

Examples of other hybridizing taxa that show particular
promise for admixture mapping include Peromyscus mice
and the inheritance of coat color variation (Figure 2)
[55,56]. Similarly, variation in male nuptial coloration in
sticklebacks (Gasterosteus aculeatus)might be amenable to
admixture mapping in a lake with hybrids (Figure 2)
[57,58]. Hybridization between invasive and native scul-
pins (Cottus) in multiple tributaries of the Rhine offers the
opportunity tomap components of reproductive isolation in
a replicatedmanner [59]. It is likely that variation in flower
color, as well as other traits, can be mapped in hybrid
populations of Antirrhinum [60] and of Silene [61]. Hybrid-
ization between species of Heliconius butterflies with
dramatically different wing patterns and coloration offers
a final example of a system with pervasive hybridization
that might provide the substrate for mapping in natural
populations [62].

Statistical methods and data acquisition
Progress in admixture mapping is being driven by its
application to a growing number of biological systems,
outlined above, as well as by the rapid development of
new statistical approaches and modeling and of molecular
markers with increasing coverage of the genome. Below we
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provide a brief overview of advances in statistics and
markers.

Individuals are expected to have genotypes at focal loci
that are consistent with the ancestry of the remainder of
their genome. Individual loci that depart from genome-
wide ancestry possess excess admixture (Box 1) and pro-
vide the basis for genetic mapping. In genetic and practical
terms, excess ancestry represents introgression of a geno-
mic region of one parent into the genomic background of
another and allows estimation of the isolated effects of this
locus, independent of genetic background. Thus, in a gen-
eral linear model (Box 3), phenotypic variation among
individuals can be partitioned into variation owing to
genotypes at a focal locus, estimates of parental admixture
and any other appropriate predictors (e.g. coancestry, sex,
environmental covariates [12,15,28]). The use of a general
linear model makes these tests possible in standard stat-
istical software (e.g. SAS, R, S-PLUS) and benefits from the
wealth of knowledge about regression models, but special-
ized software applications for admixture mapping are also
available [63].

In the context of mapping the genetic architecture of
reproductive barriers between taxa, excess admixture can
be observed separately for the genotypes at a locus (Box 1).
The probability of observing hybrids with selectively neu-
tral genotypes should be predicted by their hybrid indexes.
If individual loci lack excess admixture, they can be con-
sidered neutral or nearly neutral, because positively or
negatively selected genotypes will be over- or underrepre-
sented relative to admixture in the remainder of the gen-

ome. This logic allows for a genome scan of differential
introgression and the identification of genes that experi-
ence selection in hybrids [3,4].

Given the straightforward use of linear models for
analysis in admixture mapping, much of the opportunity
for statistical innovation relates to controlling for popu-
lation structure and ancestry. At the extreme, an allele
responsible for adaptation in one parental taxon will be in
complete linkage disequilibrium with all markers that
have fixed allele differences between parental lineages,
even those not physically linked to the causal locus. Recom-
bination in admixed individuals will reduce the extent of
linkage disequilibrium [64–66]. A variety of different
approaches have been developed to control statistically
for genome-wide admixture and ancestry in modeling phe-
notypes [12,13,15,67]. At this relatively early stage in the
development of methods, we need to know more about the
utility of different approaches with different population
and ancestry structures [12–14,16,66,67]. Empirical stu-
dies would be helpful, but there is a need for comprehen-
sive modeling. One persistent question that might be
answered by future modeling studies is the sample sizes
that are required to achieve desirable levels of power in
mapping studies. This is a problem that depends on several
factors, including the information content of markers (i.e.
the allele frequency differentials between parental
lineages, dominance versus codominant markers), the phe-
notype distribution (Box 3), the hybrid index distribution
(Box 4) and the recombination history and linkage dise-
quilibrium in the sample (Figure 1). Additional areas of

Box 3. Relationship between phenotype and excess admixture

Phenotypic variation among admixed individuals can be modeled as

a function of excess admixture in a linear regression [28,76]. In each

of the panels in Figure I, ellipses encompass data points among

hybrid individuals (parental individuals are not included) in the

relationship between phenotypes (arbitrary magnitude on the y axis)

and excess admixture at a single locus (see Box 1). In each panel,

parental (p̄1 and p̄2) and F1 (F1) phenotypic means are marked.

Phenotypic variation among individuals can be a significant function

of excess admixture at a focal locus (a), or can be largely

independent thereof (b). Contrasts between significant (a) and

nonsignificant (b) loci are what make whole-genome mapping

possible. (c) Illustration of the case of asymmetric introgression

and a focal locus that is responsible for some of the variation in

phenotype. In each of these cases, admixture mapping would

involve constructing a linear model of phenotype as a function of

excess admixture (and potentially other covariates). General linear

models provide a flexible and powerful statistical framework to

model phenotypes. Beyond this, clearly the frequency in a study

sample of individuals with different levels of admixture and excess

admixture will affect the prospects for mapping (see Box 4).

Figure I. Relationship of phenotype to loci with excess admixture.
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Box 4. Sampling distributions of admixed individuals

A critical determinant of the prospects for mapping in any study in

natural populations is the frequency of individuals with different

levels of admixture. Figure I illustrates four distributions that might

be encountered with 100 individuals sampled from a hybrid

population. Ideally, a roughly even distribution of individuals will

be found across the hybrid index, but this level of admixture between

groups might be rare. Many hybrid populations might lack inter-

mediate individuals and be bimodal, with a preponderance of

parental and highly backcrossed individuals [84]. Some hybrid

populations consist only of parental and F1 individuals and will be

less suitable for mapping, given that the products of meiosis in the

F1 are not observed. Finally, in some cases introgression will be

highly asymmetric, with introgressed individuals only toward one of

the parental taxa (e.g. [57]). Asymmetric introgression will permit

analysis of the effects of introgressed alleles into one of the parental

genotypic backgrounds, but will not yield estimates of the effects of

the alternative alleles in the other genomic background (Box 3,

Figure Ic).

These distributions were chosen to represent extremes and it is

likely that admixed populations will fall between these cases. More

studies of natural populations, with sufficient marker resolution to

provide informative estimates of hybrid index, would be helpful in

judging how frequently admixture mapping can be applied profitably.

The distributions also illustrate an advantage of admixture mapping

relative to other forms of association mapping. The existence of a

single axis of variation between parental taxa allows potentially

informative, intermediate individuals to be identified easily. The

distribution of informative individuals will be much more difficult to

establish for the typically greater number of potential ancestral

populations in association mapping.

Figure I. Frequency of individuals with different types of admixture.

ht
tp

://
do

c.
re

ro
.c

h

6



ongoing statistical refinement address the pervasive issue
of multiple tests in genome scans [68], and future meth-
odological developments might allow for models that use
information from neighboring markers (as in Ref. [69]) and
for analysis of epistatic interactions among genes.

High-throughput methods for sequencing and nucleo-
tide polymorphism detection are making it possible to
detect variation at nearly 107 molecular markers in some
species of interest [48,51]. Clearly, analysis at this scale
generates new demands on computational efficiency and
interpretability of results. Haplotype analysis might be
feasible in some populations (of some taxa) so as to reduce
the number of loci that need to be considered [70]. But it is
likely that as the scale at which marker data are gathered

continues to increase, new methods for analysis will need
to be developed. Another challenge arises as larger num-
bers of simple sequence repeat markers (SSRs) are becom-
ing available formany species. These SSRs often are highly
polymorphic, sometimes with 40–50 different alleles
observed at a locus, which presents a challenge for map-
ping allelic and genotypic effects. One possibility in admix-
ture mapping is to collapse alleles into allelic classes that
best represent variation between parental lineages [4,69].

Whereas mapping in natural populations is clearly
beneficial for studies of many organisms of interest, its
applicability across taxa is limited because a genetic or
physical map of markers is critical for mapping. A descrip-
tion of the genetic architecture of traits depends on knowl-
edge of the likely independence of individual markers and
contrasts among markers along a linkage group. Without
linkage information, conclusions will be limited to the
identification of markers associated with isolation or phe-
notype and estimates of gene action (e.g. dominance
relationships of alleles).

Variation in chromosome number among species is a
major determinant of the amount of recombination per
meiosis (i.e. genetic map length), and of the number of
markers that are required to cover a genetic map with a
certain density of markers. Typically each chromosome
pair has one crossover per meiosis (i.e. is 1 Morgan in
length), and therefore the genetic map length of species
increases linearly with chromosome number. Achieving a
density of mapped markers of one marker every 10 cen-
tiMorgans will vary from �30 markers for a species like
Anopheles gambiae with 3 chromosome pairs, to 170–200
markers for sunflowers, Populus and mouse with 17–20
chromosome pairs, and beyond for species with larger
numbers of chromosomes.

Prospects
The list of organisms studied by admixture mapping is
growing. The ongoing studies outlined in this paper are
promising and will be good tests of the value of admixture
mapping in diverse taxa. In addition to themethodological
challenges discussed in the preceding section, the pro-
spects for admixture mapping also depend on the genomic
architecture of traits of interest. For example, the genomic
architecture of reproductive isolation might be complex in
a highly diverged species pair with many chromosomes
and incomplete isolation; in this case, the effects of indi-
vidual loci might be relatively weak and difficult to detect,
or to disentangle from genes with which they interact
epistatically. Similarly, given that reproductive isolation
between taxa is a property that potentially results from
the contributions of many phenotypes, particularly in a
natural hybrid zone, one would expect many underlying
genes and possibilities for epistasis. In this case, a power-
ful genome scan for contributions to isolation should
detect many significant regions, each of relatively small
effect. Whereas a small number of leading, large-effect
candidates would facilitate additional study and charac-
terization of the effect of individual genes, this genetic
architecture might not be the reality. Furthermore, stat-
istical detection of many genes of small effect will have
lower power than of few genes of large effect [71], so the

Figure 2. Peromyscus, sticklebacks and Populus are subjects of current studies

that utilize admixture mapping to resolve the genetics of isolating barriers and trait

differences. (a) Color variation between beach mice (Peromyscus polionotus

leucocephalus, left) and mainland mice (P. p. subgriseus, right) has been the

subject of candidate gene analysis and classical crossing studies [55,56]. Contact

between color variants at multiple geographic locations should facilitate replicated

analysis of the genetics of color variation and differential selection in natural

populations. (b) Extreme variation in male nuptial coloration is being mapped by

utilizing hybrids between limnetic and benthic sticklebacks (Gasterosteus

aculeatus) in Enos Lake in British Columbia [57,58]. (c) The genetic architecture

of trait differences and reproductive isolation is the subject of ongoing research in

European Populus (P. tremula, left; P. alba, right) [4]. Leaf morphology is

associated with differences in biomass accumulation in Populus. Photo credits:

(a) Cynthia Steiner and Shawn Cary, (b) Tiffany Malek and (c) Christian Lexer.
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likelihood of fully characterizing the genetics will be lim-
ited with admixturemapping, as with other approaches to
mapping.

Additional empirical studies, with increasing marker
resolution, will yield better descriptions of what patterns of
recombination are found in admixed populations. Recent
studies of wild mice and Arabidopsis provide estimates of
linkage disequilibrium in natural populations without
admixture [72,73], but studies with comparable marker
resolution have not been conducted for admixed popu-
lations. Sampling of admixed populations in various
species will identify populations with good power for map-
ping (balance of historical recombination and sufficient
linkage disequilibrium for mapping; see Figure 1 and
Box 4) and eventually will give better knowledge of the
suitability of different taxa and admixture histories for
mapping. A similar concern involves the expected rarity of
negatively selected genotypes in sampled hybrids [9].
Whereas these will be detected as underrepresented gen-
otypes and contribute to amap of isolating factors, depend-
ing on the pattern of introgression, their raritymightmake
it difficult to test for associations of these loci with pheno-
types associated with isolating barriers.

Beyond fine-scale marker surveys of the genome, an
important feature of future admixture mapping studies
will be the sampling of other important covariates of
phenotype. Given that these studies are in natural popu-
lations and are subject to uncontrolled variation in
environmental influences on phenotypic variation, the
measurement of relevant environmental variables and
their incorporation into linear models [12] might be critical
to successful mapping of genetic variation.

Whole-genome association mapping of intraspecific
variation holds considerable promise [14], and we expect
that this method will contribute to our understanding of
local adaptation and diversification within taxa. Admix-
ture mapping complements this area of research in that it
is analytically simpler (two ancestral lineages rather than
many) and it involves recombination between phenotypi-
cally divergent parental lineages (Box 2). Consequently,
admixture mapping is particularly appropriate for the
study of species boundaries and the role of adaptation
and divergent phenotypes in isolation between taxa. It
remains to be seen whether natural populations that
experience admixture are more likely to provide the requi-
site recombinant individuals for mapping than are the
more complex population surveys of variation in associ-
ation mapping. Both approaches for mapping in natural
populations yield candidates for future study of the
genetics,molecular biology and development of phenotypes
of consequence in ecology and evolution.
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